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2. METHODS FOR LIGHTNING DETECTION BY REAL-TIME NETWORKS 

A. THE LIGHTNING DISCHARGE- BASIC PROCESSES AND TERMINOLOGY 

Lightning discharges can be divid,ed into 
two types: 
• Cloud-to-ground (CG) discharges, which 

have at least one channel connecting the 
cloud to the ground 

• Cloud discharges that have no channel to 
ground. These cloud discharges can, in tum, 
be classified as in-cloud, cloud-to-air, and 
cloud-to-cloud. 
Most of the practical meteorological 

interest in lightning detection focuses on cloud­
to-ground (CG) lightning discharges. In 
addition, the two major detection systems in 
general use today are designed for detecting CG 
lightning. However, cloud lightning may also 
be important for meteorological applications. 
Recent research indicates that detection of 
cloud lightning could be a useful tool for 
nowcasting (Juvanon du Vachat and Cheze, 
1993) and for assessing severe weather charact­
eristics of convective storms such as microbursts 
and tornadoes (Goodman et al., 1988c, 1989; 
Buechler et al., 1988, 1989; Laroche et al., 
1991a,b; MacGorman et al., 1989). 

In order to better understand the prevalent 
CG detection technology, and to define the 
terminology to be used in the rest of this report, 
we present a short description of CG lightning 
discharge processes. Excellent reviews and 
explanations of this subject are by Uman (1969, 
1987); these two references are given at the end 
of this section. A good summary by Fisher 
(1992) is in the list of lightning network publi­
cations in section 5 of this report. 

A CG lightning discharge is typically 
initiated inside the thundercloud. It is first 
apparent when a faint negatively charged 
channel, the stepped leader, emerges from the 
base of the cloud. Under the influence of the 
electric field established between the cloud 
and the ground, the leader propagates towards 
the ground in a series of luminous steps of about 
1 microsecond in duration and 50 to 100 meters in 
length, with a pause between steps of about 50 
microseconds. The stepped leader reaches the 
ground in tens of milliseconds depending on the 
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tortuosity of its path. When the stepped 
leader channel approaches the ground, it has 
about 5 Coulombs of negative charge on it and 
carries a very strong electric potential with 
respect to ground of about -loB volts. 

The strong electric field between the leader 
and the ground causes upward-moving dis­
charges, or streamers, from objects on the 
ground. When one of these streamers contacts 
the tip of the leader, 50 to 100 meters above the 
surface, the following occurs: 
• The leader channel is connected to the 

potential of the ground 
• Charge starts flowing to the ground 
• Current wave propagates as a bright pulse 

up the channel. 
This discharge process is called a return stroke 
and takes less than 100 microseconds. The 
charge deposited on the leader flows down the 
channel behind the wave front producing a 
current at the ground that has an average peak 
value of about 30 kiloAmperes. It takes about 1 
microsecond for the current to reach its peak 
value, and about 50 microseconds to decay to 
half that value. 

As the leader charge flows down the 
channel to the ground, electric and magnetic 
field changes are produced that propagate 
outwards from all segments of the channel 
involved in the current flow. These field 
changes have rapid variations that follow the 
variations of the current flowing down the 
channel of the stepped leader. The field 
changes have electrostatic, inductive, and 
radiative components, and each of these 
components has fluctuations of different 
frequencies that have different attenuation 
characteristics as the fields propagate from 
the lightning channel. Therefore, the shapes 
of the field changes are strong functions of 
radial distance from the channel. The detailed 
structure of the first several microseconds of the 
electric and magnetic field changes produced by 
the return stroke is of fundamental importance 
in the lightning detection systems described 
below. 



After the current has ceased to flow down 
the stepped leader there is a pause of 
about 20 to 150 milliseconds. After 
another leader can propagate down the 
already established but faint lightning 
channel. This leader is not stepped, but rather 
continuous and is called a dart leader. On the 
other hand, no dart leader might occur and the 
flash may end. A dart leader is produced when 
additional charge is made available to the top 
of the decaying channel in less than about 100 
milliseconds by breakdown mechanisms known 
as K- and }-processes. The dart leader deposits 
about one Coulomb the channel 
and carries cloud to the vicinity of 
the ground. Again a return stroke is produced. 
The peak amplitude the current flowing in 
subsequent return strokes is but not 
always, smaller than that of the 
stroke. As a coi1se~Qu 
changes are also in amplitude 
and have shorter than those the 
first return stroke. Dart leaders and return 
strokes subsequent to the are normally not 
branched. The of leader and return 
stroke is known as a AH that use 
essentially the same channel to ground con­
stitute a single doud-to-ground flash. A flash 
might be made up of one to a tens of strokes. 
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"""''""'" can also be 
by leaders that 

are positively charged. The resulting return 
stroke effectively lowers positive charge from 
the doud to the ground. The combination of 
leader and return stroke is then called a 
positive stroke. Usually, there are no 
subsequent leaders down the existing channel, 
so that only one stroke makes up a positive 
flash. Generally, positive flashes constitute 
only a few percent of all CG flashes. The peak 
current of their return strokes, however, can be 
larger than the peak current of negative return 
strokes and, thus, can cause greater damage 
than negative flashes. A large percent 
fires and damage to power lines is 
caused by positive flashes. 

There is an extremely small percentage 
flashes that are initiated from the tops 
buildings and towers, as wen as 
by rockets attached to by wire. 
leaders move up to cloud, and their 

. channels branch upwards. 

Uman, M.A., 1969: Lightning. Dover Publications, 
Inc., New 298 pp. 

Uman, M.A., 1987: The lightning 
International Geophysics Series, 39, Academic 
Press, Inc., Orlando, Florida, 377 pp. 



B. MAGNETIC DIRECTION ANDER (OF) NETWORKS 

Direction-finder (DF) lightning location 
systems are based on classical radio direction­
finding technology developed several decades 
ago. Two or more crossed-loop antennas located 
at different places are used to detect the 
magnetic field emitted by the return stroke 
current. Each antenna consists of two vertical 
loops perpendicular to each other and oriented 
north-south and east-west, respectively. The 
signal induced in each loop depends on the in­
clination of the lightning channel, the current 
flowing in the channel, and the angle between 
the plane of the loop and the bearing or azi­
muth to the lightning channel. By taking the 
ratio of the signals induced in each of the two 
loops, the ratio depends on only the inclination 
of the channel and its bearing. If the channel is 
fairly vertical, the bearing to the lightning 
flash can be determined for each crossed-loop 
antenna. The actual location can then be 
determined by triangulating signals from 
different antennas. 

The major technological improvement to 
classical radio direction-finding by Lightning 
Location and Protection, Inc. (LLP) in the 1970s 
consisted of a patented time-gated, wide band, 
wave form discrimination algorithm that is 
used to process all incoming signals at each DF. 
This algorithm identifies the initial radiation 
peak of the magnetic field. This peak is 
associated with the beginning of the return­
stroke current roughly 100 meters from ground. 
At that point the channel is predominantly 
vertical and, thus, its azimuth can be obtained 
quite accurately. In addition, concentrating on 
the lower 100 meters or so of the channel has 
the advantage of obtaining the location of the 
channel at the point of ground attachment, so 
that location uncertainties due to the tortuosity 
and branching of the channel can be avoided. 

The LLP system also discriminates against 
signals from noise and cloud flashes by 
examining certain features of the shape of the 
incoming signal wave form. If those features 
satisfy certain criteria, previously established 
from the statistical analysis of a number of 
waveforms from known cloud-to-ground flashes, 
the signal is considered to have originated by a 
lightning stroke to ground. Signals not passing 
the pre-established criteria are rejected. Once 
a CG return stroke is detected, the DF counts the 
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number of subsequent return strokes identified as 
being part 'of the same flash, and produces one 
record giving the azimuth, peak signal 
strength, total number of return strokes, and the 
polarity of the flash (whether the discharge 
brought negative or positive charge to the 
ground). The polarity of the CG flash is 
determined by a flat plate electric field 
antenna. The flash record is then transmitted 
to a central processing site. 

At the central site, the records from all the 
DFs of the network are received. A Position 
Analyzer (PA) takes all the DF records 
arriving within a preset time window 
(typically 20 milliseconds or less), assumes 
that the DFs detected the same flash, and cal­
culates the location of the lightning strike to 
ground. Basically, only 2 DFs are needed to 
locate a flash. Figure 1 illustrates this 
situation. Solid lines represent the measured 
bearings to the flash, and dashed lines outline 
the angular random error in azimuth measure­
ments. This error is typically less than 1° for 
the earlier DF models and less than 0.5° for the 
newer ones. The dot indicates the computed 
flash location while the shaded region indi­
cates the area where the flash probably 
occurred. A complication arises when only 2 
DFs detect the flash and the flash lies close to 
the baseline (Figure 2). In that case, the PA 
assumes that the flash occurred along the base­
line and uses the ratio of the signal strengths to 
position the flash. When 3 or more DFs detect 
the same flash, there is redundant information 
for the triangulation calculation, and the flash 
location can then be obtained by a method that 
minimizes the chi square of the differences be­
tween the measured azimuth and the computed 
one. Figure 3 portrays this situation. The lines 
represent the measured azimuths to the flash. 
In this situation, 3 possible locations are defin­
ed by the 3 different intersections of the bearing 
vectors (open circles). The PA then computes 
the position (solid dot) that would minimize 
the square differences between observed (solid 
lines) and computed azimuths (dashed lines). 
For clarity, the region enclosed by the 3 inter­
sections has been drawn much larger than it is 
in real situations relative to the DF spacing. 

Early lightning research leading directly 
to DF technology is described by Herrman et al. 
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ning detection 
antennas for the continent>! 
sells the data to a 
of the U.S. 
technology can be 
(1983); Maier et aL (1 
(1983a,b, 1990); Orville 
Nadis (1989); Orville 

Studies with DF 
origin in the U.S. have 
son, 1982; 

Israelsson 

sources of 
topographic features and 
that intercept and 
direction, the electric 
signals produced by 
errors that are introduced 
antenna site, and 
errors are a function of 

et al. 
(1987); 

The 

location, and depend on of terrain 
features and man-made structures around an-
tenna sites. They tend to be constant with 
time and, when determined a 
azimuths can be corrected in real 

Several schemes have b1c>en 
rection of site errors (Mach, 
1984; Guillo, 1985; Mach et Orville, 
Jr., 1987; Schutte et al., 1987a,b; Kawamura et 
al., 1988; Passi and Lopez, 1 and 
Qiming, 1991; Lopez and Passi, 
1993; Tyahla and Lopez, 1994). 
depend on statistical analysis of 
recorded data. Usually, data from one 
thunderstorm season are enough. Once 
corrections are applied, residual azimuth 
measuring errors are 0.5' or less. 

Flash location accuracy by a network of DFs 
depends mainly on distances between DFs, net-
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within 
of the 

Detection Network 
by is es-

4 km, depending on 
location. DF separation for this network is on 
the order of 250 to 300 km. For sirnaller networks 
with DF separations of tens of km, location ac­
curacy can reach 0.4 to 0.5 km (Maier, 1991a, b). 

Network detection efficiency is also a 
function of network configuration, antenna sep­
aration, and location of flashes with respect to 
the network. It also depends on DF gain. An 
important factor determining whether a flash 
is detected or not is the attenuation of 
signal with distance. H the magnetic 
strength of a flash is not large enough to reach 
at least two DFs with a value above DF 
threshold, flash location cannot be determined. 
Another factor of 
all CG flashes is that wave form criteria used 
to a flash as 
adequate for CG flashes in aH 
regions and all weather situations (Ishii and 
Hojo, 1988, 1989). A similar situation arises 
when the flash's signal strength is too smaH 
and the wave form fails to the 
acceptance criteria (Maier, In some 
cases, LLP has modified wave form discrim­
ination parameters. Present estimates 
(MacGorman and Rust, 1988a,b,c, 1989; Cum­
mins et al., 1992; Maier, 1992) put the detection 
efficiency of DF networks at 60 to 90% 
depending on network configuration, DF 
separation, and flash location. 

Over the last few years, LLP has 
developed a method for lightning location that 
combines direction finding and time-of-arrival 
information (Cummins et al., 1993). This 
method, called Improved Performance from 
Combined Technology (IMPACT) by LLP, 
estimates both the location and time of 
occurrence of the return stroke. Each sensor pro­
vides information on azimuth and the time it 
took the signal to propagate from its origin to 
the station (absolute arrival time minus the es­
timated time of occurrence). The azimuth 
establishes a vector from the sensor to the 
stroke, while the propagation time establishes 
distance (range), thus defining a circular locus 
of possible locations around the sensor. Ideally, 
the location and time of occurrence of the dis­
charge are obtained by selecting the position 
and time that ca use all circles and vectors to 



intersect. In practice, location and time are 
determined by iteratively adjusting initial 
estimates of these parameters so that diff­
erences between observed and calculated azi­
muths and propagation times are minimized. 
When only two stations detect a flash, there is 
redundant information for an optimized esti­
mate of location. In that case there are four 
measured parameters (two azimuths and two 
arrival times), while only three parameters 
are estimated (latitude, longitude, and time). 
Location accuracy has been estimated as 500 
meters or better in areas surrounded by sensors 
using the IMP ACT location algorithm. 

DF1 

Although LLP systems detect and analyze 
individual return strokes from each flash, they 
group all ·Strokes that belong to the same flash 
and provide only one data record per flash. 
This record contains time, location, and peak 
signal amplitude of only the first return stroke, 
but provides multiplicity or number of strokes 
that made up the flash. If the user wants the 
total number of strokes over an area, the 
multiplicity of all flashes is added over the 
region of interest. New systems with IMPACT 
technology will provide information for each 
stroke. 

± 1° Azimuth Error 

Computed Flas 
Location 

Area a Probable 
Flash Location 

FIGURE 1. Determination of flash location when only 2 DFs detect it. Solid lines represent measured 
bearings to the flash; dashed lines outline the angular random error in azimuth measurements. Dot 
indicates computed flash location; shaded region indicates area where flash probably occurred. 
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FIGURE 2. Determination 
assumes 

the 

2 DFs detect close to baseline. The Position 
the baseline and uses the ratio to 

FIGURE 3. Determination of flash location when 3 DFs detect it. Solid lines represent measured azimuths 
to flash. Open circles indicate the 3 possible locations defined by 3 different intersections of azimuth 
vectors. The Position Analyzer computes the position (solid dot) that would minimize the square 
differences between observed (solid lines) and computed azimuths (dashed lines). 
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C. TIME-OF-ARRIVAL (TOA) NETWORKS 

Time-of-arrival (TOA) lightning detection 
systems are based on determining differences in 
arrival times at various stations of the electric 
pulse emitted by a lightning discharge. This 
methodology has been used in different 
countries for the detection of lightning since the 
early 1970s. A commercial TOA system called 
Lightning Position and Tracking System 
(LP A TS) was first developed and manufactured 
early in the 1980s by Atlantic Scientific 
Corporation, that later became Atmospheric 
Research Systems, Inc. (ARSI). The system uses 
an array of four or more simple whip antennas 
roughly configured in a square and separated by 
200 to 400 km. Each station detects the electric 
pulse emitted by a return stroke and assigns to it 
the time of arrival of its peak amplitude. As 
discussed before, the peak amplitude 
corresponds to the initiation of the return stroke 
current when the leader channel is 
approximately 100 meters from the ground. 

The antenna stations must be synchronized 
to a dependable absolute time standard such as 
a television station, LORAN-C, or the Global 
Positioning System. Each station sends the 
information about each electric pulse it detects 
and the time of arrival of the peak amplitude 
to a central analyzer. This analyzer computes 
the difference in the time of arrival of the 
lightning signal between pairs of stations. For 
a given time-of-arrival difference between a 
pair of stations, the stroke that emitted the 
signal could be located anywhere along one of 
the branches of a hyperbola that passes 
between the two stations and has as foci the 
two station locations, as illustrated in Figure 4. 
Although the branch of the hyperbola along 
which the stroke is located can be defined by 
the sign of the time-of-arrival difference, the 
specific location of the stroke can not be 
determined. When three stations detect a 
stroke, however, two non-redundant hyperbola 
branches are defined. As shown in Figure 5, the 
intersection of these can define the location of 
the stroke (open circle). In some situations, 
however, the two hyperbola branches can 
intersect at two points, one close to the network 
and another away from it. This situation is 
illustrated in Figure 6, where the two open 
circles represent the two intersections, one 
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corresponding to the stroke position and the 
other one not. Two hyperbola branches will 
intersect in two points in the case of stroke 
signals originating in the region outside of the 
area enclosed by the baselines, between the 
lines extending the baselines outwards. In this 
case a minimum of four stations (giving three 
different non-redundant hyperbolas) must 
report the arrival of the signal from the same 
stroke in order to unambiguously locate the 
source of the signal. The stroke location is 
found by solving for the intersection of 
spherical hyperbolic equations modified to 
account for the oblate spheroidal . shape of the 
earth. 

Unlike the LLP system, LPATS does not 
employ waveform discrimination to determine 
if the electric pulse received at an antenna site 
is from electric noise, a cloud, or a CG stroke. 
Nor does LP A TS discriminate between the first 
stroke of a flash and strokes subsequent to the 
first. Thus, each individual station reports to 
the central analyzer '!ll electric field pulses 
detected. Signal attenuation due to 
propagation, however, contributes to the 
elimination of many, although not all, non-CG 
strokes as follows: non-lightning noise signals 
are usually weak compared to signals from 
lightning discharges. Likewise, cloud strokes 
produce signals that generally, but not always, 
have smaller peak amplitudes. Cloud pulses 
also tend to have their largest amplitudes at 
higher radio frequencies than those of CG 
strokes. Thus, noise and cloud stroke signals 
will be much more attenuated by propagation 
than those from CG strokes. Since sensors are 
typically located 200 to 400 km apart, the 
probability of simultaneous detection of a non­
CG stroke by the 3 or 4 stations needed for 
location would be small, ·and many non-CG 
signals would tend to be discarded in that way. 

ARSI now examines the width of the 
detected pulses to distinguish between cloud 
and CG strokes. Generally, cloud lightning 
pulses are narrower than those from CG strokes. 
ARSI uses a 10-microsecond pulse width 
criterion to determine if a pulse is from a cloud 
or a CG stroke. If at least one of the stations 
detecting a stroke reports a pulse shorter than 
that value, the source is not regarded as a CG 



stroke" ARSI has 

is 
used an 

baselines of 130 to 180 
microsecond criterion to eliminate doud strokes" 
Their indicate that of 
flashes in the summer were 

summero 

less than a 
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of 20 to 150 microseconds" Narrow 
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outside its origin in 
Australia (Ryan and 
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A major source of error for 
the changes in the 
propagates from 
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sensors" Propagation of the 
moves the peaks in time 
threshold crossing" 
additional delay in detecting the arrival of 
the peak beyond what it would take the peak 
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stroke is not 
far to reach at least 4 antennas 
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waveforms" 
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pulse, reduces the detection efficiency 
system" Another situation reducing detection 
efficiency occurs when a thunderstorm is 
located very close to an antenna" In that case, 
too many radio pulses from cloud lightning 
could be detected, overloading the station's 
processing capability (MacGorman et at, 1991)" 
In that situation, LPATS turns off the station, 
thereby reducing the number of stations 
available for unambiguous detection of 
lightning events farther away" On the other 
hand, a factor tending to artificially increase 
detection efficiency is the indusion of cloud 
strokes as part of the CG stroke population as 
noted above" Janssen (1989) reported a detection 
efficiency of 92% within the primary coverage 
area of a 125-km baseline network in Holland" 
Fisher (1992), however, is of the opinion that 
some of the procedures employed by Janssen 
appear to bias the predicted detection 
efficiency in the optimistic direction. The 
early evaluation of MacGorman and Rust 
(1988a,b,c, 1989) suggested a detection 
efficiency of between 40 to 55% of the CG 
flashes" In addition, ARSI has calculated a 
theoretical value of between 90 and 99%" 



f 1 

It should be emphasized that LPATS does 
not discriminate between the first stroke of a 
flash and strokes using the same channel 
subsequent to the first. The position 
information that is normally displayed by 
LPA TS systems is only provided for individual 
strokes, whether they belong to the same flash 
or not. If the user wants to be able to combine 
all of the strokes corresponding to the same 

Receiver 1 

flash, the time and distance clustering criteria 
need to be specified for the subsequent strokes. 
For example, a rule to construct a flash can be 
established that a subsequent stroke is one that 
occurs within 500 milliseconds of the first or 
previous subsequent stroke, and is located 
within 10 km of the first stroke of the same 
flash (Casper and Bent, 1992). 

Rece_iver 2 

Hyperbola Branch Defined 
by Time-of-Arrival 
Difference 

FIGURE 4. Detection of a stroke by two TOA receivers. For a given time-of-arrival difference, the stroke 
that emitted the signal could be located anywhere along one of the branches of a hyperbola that 
passes between the two receivers and has as foci the two receiver locations. 
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FIGURE 5. Detection 
whose intersection 

Receiver 3 

Location 

3 TOA receivers. Two non-redundant i.,,,,,.,,..i.,,.;1,, branch.es are 
the stroke 

Receiver 2 

True Stroke 
Position 

FIGURE 6. Detection a stroke receivers. Two hyperbola branches are defined that intersect at 
two points (open circles); one cm·rP.~:nmi'ld.s to the stroke position and the other does not. 



D. TOTAL LIGHTNING DETECTION SYSTEMS 

The French Office National d'Etudes et de 
Recherches Aerospatiales (ONERA) has 
developed a system that detects and locates 
lightning discharges of all types in three 
dimensions. The localization of electrical 
activity is achieved by Very High Frequency 
(VHF) electromagnetic interferometry. The 
system detects and locates sources of VHF 
radiation that are present in all types of 
lightning discharges. The firm Dimensions, of 
St. Aubin, France, manufactures and markets 
the equipment Systeme d'Alerte Foudre par 
Interferometrie Radioelectrique (SAFIR). 
Origins of the French lightning detection 
system using SAFIR technology can be traced 
with Boulay et al. (1989); Richard (1990, 
1991a, 1992); Richard et al. (1988, 1989, 1990); 
and Kawasaki et al. (1992). 

Lightning discharges emit electromagnetic 
radiation over a large frequency spectrum. The 
most intense radiation comes from the return 
stokes of CG discharges at a low frequency 
mostly below 1 megaHertz. Lightning 
discharges, however, emit much more profusely 
within the VHF band (roughly 30 to 300 
megaHertz). In this and the Ultra High 
Frequency (UHF) band, the signals consist of 
isolated and short bursts of pulses with 
durations ranging from a few hundred 
microseconds to a few milliseconds. The typical 
separation between pulses is about 50 to 100 
microseconds. These radiation pulses come from 
all portions of the lightning channels, both 
during their formation as well as during the 
current propagation along them. They are 
principally due to fast transitions between low 
and high conductivity phases of the lightning 
channel plasma. Both cloud and CG strokes 
emit these pulses during most stages of 
development: preliminary breakdown, stepped 
leader, dart leader, recoil streamers and return 
stroke. 
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SAFIR samples the highly impulsive elec­
tromagnetic signals in a VHF band with a time 
resolution of 100 microseconds. Thus, the system 
resolves the different lightning events as suc­
cessions of impulsive single point sources. The 
total number of samples per lightning flash 
ranges from a thousand to ten thousand for the 
most active ones. The sources are localized in 
three-dimensional space by the principle of in­
terferometry that is based on the measurement 
of the phase difference of an incident plane 
wave on a pair of electric field whip antennas. 
Measured phase difference is a function of the 
signal direction of arrival. Antennas are sepa­
rated from each other by about one meter. A 
cluster of three antennas is necessary to obtain 
both azimuth and elevation of the point source. 

A basic SAFIR system consists of three de­
tection stations and a central processing station. 
The distance between stations can be from 20 to 
100 km. Each detection station contains three 
electric field whip antennas that perform the 
interferometric angular localization Of the 
signal sources. The central station performs the 
final three-dimensional triangulation of the 
signal sources and the main real-time display 
of the information. Maps of the electrical 
activity and other warning information are 
then transmitted to remote display terminals. 

Because of the very high frequency band 
employed by SAFIR, signals are usually re­
ceived from lightning no more than roughly 200 
km away; useful coverage is basically an area 
of 150 km in radius. Typical spatial resolution 
is 500 m within the network and 5 km at the 
outer edges of the service area. Actual reso­
lution depends on system configuration and 
relative position of lightning. 

SAFIR also uses an electrostatic field mill 
on the ground to detect the early electrification 
of clouds that are developing at short range. 



The SAFIR can 
three-dimensional information on cloud and CG 

channels for a relatively sm.aH area 
a or installation. 

DF systems can highly accurate CG 
flash locations with a high detection 
efficiency over smaU areas with short-baseline 
networks of 4 to 5 DFs. These systems can also 
cover medium to large areas with networks of 
DFs that are separated from each other by 100 
to 300 km. Medium to detection efficiency 
and depending on 
:network and the position of the 
storms relative to the network With the new 
IMPACT 

no·~<mC>lM"n season or a 
of one season suffices. 

TOA systems can cover medium to 
areas with networks of sensors located 200 to 
400 km apart. These systems provide 
localizations of strokes with medium to 
accuracies and detection efficiencies depending 
on network of storms 
relative to the the nature of the 
topography over whkh the Hghtning signals 
propagate. Within short-baseline networks 
over flat uniform detection efficiency 
and accuracy can be systems do 
not discriminate between and CG stroke 
waveforms, and there are features to 
filter out cloud strokes, a considerable portion 
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can sHH be "'"'"'""'~off"! 
there is no way to 
and cloud strokes w0•~0 .. i-ar1 

Most the cloud strokes 
out are indistinguishable positive CG 
flashes. Presently, there is :no procedure to 
correct for the location biases due to 
differential propagation effects on waveforms. 

Comparative evaluations of results from 
the DF and TOA lightning :network methods 
were made by MacGorman and Rust 
1989). H is important to note that such 
comparisons apply to the networks 
were configured at the time of the 

Lightning detection sateHites are 
to be deployed over the next few 

model is scheduled to be launched 
and the 
later as 

Rainfall Measuring Mission. The sensor was 
by NASA and is an of 

devices 

From work with "'"''"''"',_,...,..,,.,,"'"'" 
NASA estimates 

will detect 90% of all 
occurs in Flash data wm be '-'-''"'-'-'"' 
at each location in low latitudes twice a in 
bins that are smaller than 10 10 km. U wm 
collect total and not distinguish 

and doud 
information collected 

sateHite could to be 
meteorological services for 
monitoring of convection over 
subtropical oceans and land masses" 

real-time 
and 
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3. OPERATIONAL AND RESEARCH USES OF LIGHTNING NETWORK DATA 

A. NON-METEOROLOGICAL US ES IN OPERATIONS 

As real-time lightning detection networks 
were established in the U.S. and many other 
countries, the first two operational users 
usually were forest fire detection agencies and 
utility companies. These operational uses of 
lightning network data have the ground strike 
as the most important parameter. 

• Forest fire detection 
The application of lightning network data to 
forest fire detection and monitoring for the 
western U.S. and Alaska is described by 
Krider et al. (1980). The Bureau of Land 
Management (BLM) installed a real-time 
lightning network for early detection of forest 
and rangeland fires, and used network data 
for significant cost savings. A main benefit is 
eliminating initial searches for lightning 
with reconnaissance aircraft or ground crews. 
Also, the lightning network aids forecasting 
and nowcasting by identifying lightning-pro­
ducing storms at an earlier stage in environ­
ments considered conducive to initiation and 
spread of fires. In British Columbia, 
Nimchuk (1985) emphasizes similar factors 
of confirming lightning activity and correl­
ating with other weather parameters. 
Lightning data are used in most provinces of 
Canada for forest fire purposes. Latham 
(1991) describes mainly positive flashes from 
the anvillike plume of a deliberately-set 
forest fire that were detected by a lightning 
network. 

• Utilities 
At the time when networks were found useful 
for fire detection, utilities also began 
employing lightning networks for operations. 
The Electric Power Research Institute (EPRI) 
supported the installation and operation of a 
U.S. national network. Real-time operations 
for utility decision makers include crew 
scheduling and dispatch, power load 
management, and outage confirmation 
(Orville et al., 1986a,b; Orville and Songster, 
1987; Idone and Orville, 1990). Operational 
network data uses for utility and communi­
cations companies are in Kozak (1987); White 
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and Driggins (1990); Whitney and Asgeirsson 
(1991), and Cummins et al. (1993). How 
lightning networks perform for utility 
operations has been studied in Canada 
(Chisholm and Janischewskyj, 1988; Vera, 
1989; Herodotou et al., 1992), Germany (Fister 
et al., 1992), Sweden (Melin, 1991), and 
Switzerland (Montandon, 1992). 

• Aerospace and military 
1. Spacecraft operations 
Lightning has major impacts on preparation 
and launches of spacecraft. Christian et al. 
(1989) describe lightning striking a rocket 
during launch at the Kennedy Space Center 
(KSC) in Florida. At KSC, studies for 
improved lightning nowcasting and 
forecasting have used surface wind 
convergence (Watson et al., 1987a, 1991a) and 
neural networks (Frankel et al., 1990; Barnes 
et al., 1991). SAFIR detection technology has 
been employed at the European Space Center 
on the Atlantic coast of French Guiana for 
lightning warnings similar to those at KSC 
(Richard et al., 1988; Boulay et al., 1989). 
The Tanegashima Space Center in Japan uses 
lightning detection network data for similar 
purposes (Kingwell et al. (1991). Network 
lightning is used to forecast and monitor range 
safety at the White Sands Missile Range 
(Ellison, 1992). 
2. Military operations 
Hunter (1988) developed synoptic-scale 
predictors for network lightning at an Air 
Force base for guidance on significant 
thunderstorms that influence lightning­
sensitive activities. Fifth Weather Wing 
(1988) describes how lightning data are used 
by forecasters in the Air Force. 

• Explosives 
The mining community makes lightning 
warnings in . areas where explosives and 
munitions are used; a review of lightning 
detection instrumentadon is in Johnson et al. 
(1980, 1982). Network lightning data are 
used to support activities at the NWS 
Nuclear Support Office (Scott, 1989). 
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and Lewis, Preprints, 16th Conference on Severe Local Storms and Conference on 
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two 

been 
stations for 

region: 
rv•u•~n•n is poor in 

the western U.S. The area wm continue to 
have when the new radar 

in the 
..Llii~~ The rnountainous terrain throughout 
the western states radar signals in 

'"""'"u'"" .... Since most of the western states 
weather stations 

responsibility. 
forest and range 

Severe 
m.LIC'-''-"'' flash floods, and 

microbursts are in the west, but 
storms are often less intense and frequent than 
in some parts of the U.S. 
To provide localized 
operational forecasters, 
be defined as needed by the forecaster 
(Mielke, 1990). The alert is generated at the 
regional computer facility and transmitted to 
the designated office. Another option 
provides a listing of individual lightning 
strikes around a user-specified location and 
time window. A recent example of lightning 
data available in real time is in Table 1. 
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30-minute contours 
30-minute 

3-hourly contours 
contours 

72-hour count versus time 
contours 
count vs. 

30minutes 
flashes 

30minutes 
2hours 

12hours 
8 

24hours 

As needed 

30minutes 
12 
As needed 

30minutes 
12hours 
2hours 

have used flash data in 

""-""'-'=="""-..:=.;"'-=~ Gerwitz 
Stem Stmthwolf Rickard 

(1991); and Sabones Sharp (1991) ~'-C·~~ .. J~ 
uses of flashes in different local 

forecast offices to determine whether a con-
vective cell is a and the use of 
positive life of 
thunderstorms. Real-time flashes '-"·u'~""' 
ment radar and surface observations 
aviation and forecasts and 
areas with in radar coverage. 
du Vachat Cheze describe a 
nowcasting program for Paris combining 
and total lightning. 

~"""""'"""'-'-"'" Ewald describes uses of flash 
data at a facility provides 
storm advisories on the scale of 30 to 120 
minutes; flashes are considered a valuable 
supplement to radar and satellite data. 
Lightning data are used at NSSF'C for advis­
ories in-flight thunderstorms that are haz­
ardous for aviation (McCann and 
1989); uses by NSSF'C were in this section B. 
Lyons et al. (1989c) list features of flash data 
for aviation: directly identify thunderstorms, 
provide uniform and wide 
available in real simple to 
easy to animate, and warn ground crews. 



of 
wen suited for 

dat<L H is 
partkulady meteorological 
applications to the relationships of 
deep convection to mountains and large water 
bodies. Flash is compact and 
appears to be unaffected in significant way 
by topography. are easier to 

and than radar and 
areas and long 

summer 
coastlines and 
at several levels 
et al., 1984a; L6pez 
1993). 

"'"''<:"''~""' of 

The arid to semi-arid state of Arizona 
during the summer months et al., 
1994b) by time of and 
The monntainous western 
U.S. during summers of two 
1986). 

of the 
(Reap, 

The states of Kansas and Oklahoma by 
time year and day, and location within 
these states (Reap and MacGorman, 1989; 
MacGorman et al., 1993b). 
Portions of the eastern United States 
(Orville et al., 1987; Orville, 1990b); the 
second study was during winter. 
The mountainous state of Colorado, (Lopez 
and Hone, 1986). 
The state of Alaska during summer (Reap, 
1991). 
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and years 
included 'in vuoJ""·"''"·' climatologies of flashes 

Ar12:a 
Flashes 

Entire United States 
13,400,000 12/1 

Florida 
140,000 
233,000 

Arizona 

Reference 

24/6 Watson et at 

Western United States 

Colorado 
104,000 12/1 Lopez and Holle 

Alaska 

These dimatologies typically indude: 
.. Time of year of lightning, usually shown 

monthly distributions (Figure 10). 
.. Time of day of (Figure 
.. Horizontal 

various types is 
the size of the region 

.. Maps by time of year or time 
13). 
A wide variety of 

performed for regions 
a sufficiently long .., ... ,, .• ,_,,~, 
than one summer or other 
Westcott (1993) that 
somewhat over 
large cities in the 
the dties. 
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FIGURE 10. Time of year of cloud-to-ground lightning during 1989 over 
United States (from Orville, Monthly Weather Review, 119, 573-
577, 1991, @American Meteorological Society). 

40 

30 

20 

10 

Vl 
>- 0 <ll 
0 

0 
'E 20 Cl> 
u 
Qi 
a.. 

10 

Colorado 
June, July, August 
1983 
71 Days 

Time of First Flash (MST) 

78 Days 

Time of Maximum 5-Minute Flash Rate (MST) 

Time of Last Flash (MST) • 
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in summer of 1983 over Colorado (from Ltfpez and Holle, Monthly Weather 
Review, 114, 1288-1312, 1986, American Meteorological Society). 
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detection networks have been 
used by meteorologists in a wide range of 
research on thunderstorms. Due to the emerging 
nature of studies, some research has only been 
presented in informal literature. 

e Casualties and damage 
Cloud-to-ground flashes from a Florida net­
work were composited around locations of 
lightning deaths, injuries, and objects 
damaged on the ground et al., 1992, 
1993). People were victims more often at the 
end and start of compared to 
the middle. Lightning rates at the time of 
casualties were weak to moderate. Structures 
and other were struck more in the 
middle of storms with flash rates 
than for 

associated convective 

convective cells 
graphics similar to those 

in Table I located a maximum in flash counts 
that flash in Las Vegas, 

1992). 

storms with large 
high densities of 
and MacGorman, 

km area on either 
forward flanks of 

hailstreaks. was weH 
correlated with the flash rate. Lightning 
centers developed 9 minutes before hail and 5 
km backward the storm's track from 

diminished shortly 
In Oklahoma 

-""""'~'" and Burgess, 
when positive 

then the frequency and 
diameter of hail decreased after CG flashes 
switched to negative. 

'Lightning is not commonly observed in hur­
ricanes. However, bursts of lightning have 
been observed during several tropical storms 
and hurricanes during explosive convective 
development near their circulation centers, or 
in some of the outer or spiral rainbands as 
intense updrafts inject supercooled water 
above freezing levels (Black et 1986; 
Venne et at, 1989; Lyons et al., 1989b; Roohr 
and Yonder Haar, 1992). Lascody (1992) 
reports a circular pattern in the few lightning 
flashes observed by a detection network as 
hurricane Andrew's eye crossed the warm 
Gulf Stream of south Florida. 

thunderstorms have 
little or no rain at the but 

hail and weak to moderate 
tornadoes. They develop 

and have a single 
no surface downdraft. 
flashes occur the LP 

Branick and 
more negative flashes occur as the storm 
splits or merges with other storms. 

e Mesoscale 



have 
time scales of since 

downbursts and mkrobursts are short-lived 
storm-scale phenomena (WiHiams et al., 
1989a). CG lightning can typically identify a 
mkroburst (Buechler et al., 1988) through 
time trends in ratios and total 
flashes. However, to detect precursors to 
mkrobursts of up to 10 minutes or more for 
airport operations, that detect both 
doud and CG such as SAFIR have 
promise (Goodman 1988c, 1989; 
Buechler et aL, Laroche et al., 
1991a,b). derive from parent 
douds with colder than freezing, thus 
they have an ke and some lightning 
(Williams, that occur in 

environments have fewer 
than those in moist environments. 

some severe storms (Helsdon, 
and some tornadoes and superceHs 

et 1989; Knapp, 
MacGorman and Burgess, 1994 

For most nonsevere 
positive flashes are 

weaker reflectivity than 
flashes (Lopez et 

and echo is 

radar 
complementary. This summary of 
lightning comparisons proceeds from larger to 
smaller scales. Results differ due to 
variations between storms, or between 
analysis intervals in space and time. 
1. One hour or room 
During heavy rain lasting several days in 
summer over Alaska, Fathauer (1984) found 
CG lightning on fringe the raining 
douds. In Massachusetts, most flashes were 
ahead of intensifying in a squall line of 
weak echoes (Geotis and For 
storms over an hour, rain volume flash in 
Florida decreases as 
(Buechler et al., 1990; 
Buechler, Buechler and L:.ooamalfl 
Similar relations with 
for Florida 
Australia 
data in Oklahoma 

increases in a 48-km 
of two or more 

squares had 
flashes with peak reflectivHies below 40 

although this level is used to 
thunderstorms. Over 
night echoes have rain but few 
while afternoon min is the inverse 

1986). 
2. Less than one hour 
Comparing 
scales of a 

base-scan 
are around 40 dBz. In 

CG 
above 50 

decrease below 40 dBz 
1984; Watson et aL, 
storms with moderate echoes 
negative flashes than storms with 
reflectivHies that also have 
flashes (Lopez et 

shows 
at several levels. 

Watson and HoUe 

values in a 
minutes. 



• Rainfall 
Few studies have compared rain from gauges 
to network flashes. In Sweden, the ratio of 
positive to total flashes from a network 
decreased with more precipitation from 
gauges (Murty et al., 1983). Over New 
Mexico, heavy rain began at the time of peak 
lightning, and maximum rain occurred 45 
minutes after peak lightning (Ellison, 1992). 
Over Arizona, days with measurable 
precipitation related well (Figure 19) with 
lightning (Watson et al., 1994b); note that 
these results do not show amount, but presence 
of any rain on a day. 

• Small thunderstorms 
The lightning threat from small but common 
thunderstorms is important for warning and 
safety issues, in view of the casualty and 
damage results mentioned earlier. In Florida, 
the mean distance between successive CG 
flashes in a small thunderstorm ranged from 3 
to 4 km (Krider, 1988). For Kennedy Space 
Center operations, the lightning hazard from 
small storms is a major problem (Nicholson et 
al., 1988). 

• Squall lines 
In a squall line in Massachusetts, a detection 
network located lightning in the forward 
peripheral regions rather than in or near the 
cores (Geotis and Orville, 1983). Many squall 
lines also have an earlier stage with severe 
weather and/or a trailing stratiform region 
later in the life cycle. For example, Nielsen 
et al. (1994) describe lightning in a squall line 
in Kansas and Oklahoma that began by 
producing severe weather and high positive 
flash ratios, then the positive ratio 
decreased, and finally the ratio increased 
again as the trailing stratiform region 
developed. Network lightning data were 
used by Rutledge et al. (1991) and Schuur et 
al. (1991) to study electrification in the 
trailing stratiform region behind squall lines 
near Australia and in Oklahoma. In an 
Oklahoma convective line with severe 
weather, network lightning of both 
polarities was related by Watson and .Holle 
(1994) to VIL and echo tops on small scales. 
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• Thunderstorm observations 
There are two motivations for comparing 
lightning network data with human 

·observations of thunder. 
1. Thunder-day climatologies 
One motivation is to replace thunder-~ay 
climatologies, the number of days with 
thunder at a site. Thunder days have long 
been used for design and protection of ground 
facilities. The latest thunder-day, thunder 
event, and duration data for the USA are by 
MacGorman et al. (1984a). Changnon et al. 
(1988) found that values of thunder events do 
not relate well to CG flash frequencies from 
networks, and actual storm activity is 
underestimated by thunder day and event 
records. Reasons include: observers not 
hearing the thunder from the lightning 
observed by the network, the inverse, the 
tendency for lightning distributions to be 
'skewed during thunderstorms, and location 
errors in detection systems. Changnon (1989) 
compared thunder observations with CG 
network flashes in the United States (Figure 
20) although general trends exist, relation­
ships are not uniform between regions. Errors 
are considered minimal in the flash data, but 
errors in thunder events are sizable. Clodman 
and Chisholm (1993) emphasized that a few 
storms can dominate lightning samples. 
2. Automatic thunderstorm identification 
The other motivation for comparison studies 
is to use lightning networks for thunderstorm 
identification at automatic weather stations. 
McNulty et al. (1990) address operational 
issues in human versus network detection of 
thunderstorms. Reap and Orville (1990) 
related human observer records and CG 
network data in the northeast USA. Storms 
were detected by both methods during less 
than half the time with a 16-km search 
radius, compared to 82% within a SO-km 
radius. Reap (1992) compared observer 
records and CG lightning network data. As 
lightning frequency increased, the 
probability of the thunderstorm being 
detected by both methods also increased. 
And, as the radius of search with the 
lightning data increased, the human observer 
was more likely to hear the storm. 



minutes of radar measurements 

rates 

rate. 
often 
in the 

5 

recent severe-storm research has shown more 
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FIGURE 16. Positive CG flashes shown by plus signs and negative flashes by squares 
hour on 22 February 1987 along the of Mexico coast of the USA 

and Bosart, Geophysical Research 15, 
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FIGURE 17. Fraction 48-km squares with two or more positive (clear bars) or negative 
(hatched) CG flashes versus maximum reflectivity in grid square over Oklahoma and Kansas. 
Solid and dashed lines show mmm density of positive and negative flashes. VIP level 
1=18 to 29 dBz; 2=:.:30 to 40; 3""'41 to 4=46 to 49; 5=50 to 56; 6=> 57 dBz (from Reap and 
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downburst (from Seimon, Bulletin of the American Meteorological Society, 74, 189-203, 1993, @Americai 
Meteorological Society). 
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Network data were used to 
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et al. (1984a) and L6pez and 
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Lyons and Pielke, 1988). 
and model data were 
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• Synoptic influences 
1 . Upper-air soundings 
In south Florida, differences in the local 
vertical profiles of temperature, wind 
direction, and moisture from morning 
soundings were related to changes in 
frequency of CG flashes (L6pez et al., 1984). 
In central Florida, the locations and 
frequencies of flashes were strongly 
influenced by the low-level flow direction 
from upper-air soundings (L6pez and Holle, 
1987a,c). In Alberta, lightning that occurred 
later in the day was rather weakly 
correlated with convective instability, low­
level moisture, and surface heating in the 
morning upper-air soundings (Anderson and 
Charlton, 1990). 
2. Synoptic patterns 
For coastal California where CG flashes are 
relatively rare, a temperature of -20°C at 500 
millibars on the local sounding was 
somewhat indicative of lightning; expanding 
the study to include synoptic conditions gave 
limited success in a prototype study (Hunter, 
1988). During the southwest U.S. monsoon, 
Watson et al. (1994a) associated high and 
low daily CG flash frequencies with 
corresponding average surface and upper-air 
flow regimes. 

• Tropical and subtropical convection 
Uses and characteristics of lightning network 
data in tropical and subtropical regions have 
been described earlier in Operational Uses 
(Section 3B), Flash Climatologies (Section 
3C), Storm-scale Research (Section 3D), and 
this section on Additional Research (Section 
3E). Almost all of the studies have been done 
for Florida, except for the monsoon convection 
studies in the Australian region. 
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• Winter weather 
1. Eastern U.S. coast 
More winter lightning studies have been 
conducted for the region off the east coast 
than any other location. Williams (1988) 
found mostly positive flashes in a long 
precipitation band; positive CGs did not 
cluster at a scale comparable to the size of an 
isolated thunderstorm cell as they do in 
summer. Biswas and Hobbs (1990) and 
Orville (1990b) described lightning over the 
Gulf Stream (Figure 23). Dodge and Burpee 
(1993) found that 99% of the CG lightning 
was detected during rainband cases, which 
are defined as at least 90 km in length and 
last 2 hours or more; the rainbands were most 
often in the warm sectors of fronts. 
2. Other locations 
During mid-winter in Florida, Williams et 
al. (1989c) describe the complex nature of CG 
flashes detected by a network as a front 
passed through the area. To the west of, and 
over portions of Japan, lightning-producing 
convection forms during winter as cold 
continental air flows across the warmer ocean 
on the way to Japan. Goto et al. (1992) found 
fewer negative flashes in winter, and 
attributed this to low cloud tops. 
Characteristics of the flashes were more like 
those of the mature and/or dissipating stages 
of summer thunderstorms. During an intense, 
wide-spread snowstorm over the eastern U.S., 
Orville (1993) found very high CG flash 
rates, and positive flashes accounted for 13% 
of all flashes from the storm. Peak flash 
rates occurred in the warmer air to the south 
during the growth stage, then the positive 
ratio exceeded 60% to the north as lightning 
from the storm ended. 
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FIGURE 25. 

FIGURE 26. Map 44,975 flashes during less than 18 hours on a summer States 
and adjacent regions. Diamonds for negative flashes, plus signs 
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FIGURE 27. Map of 26,838 flashes over central Florida for 24 hours showing 
coasts. Diamonds for negative flashes, plus signs for positive flashes. 

sea breezes aligned 

.. ~ ~ + • 'T" • 
+ • • • 

• 

• 

• 

.. 

~' + 
*$·-·~· ....... , .... ~. 

•o .~- ~ .. ... . '\ 
\ ' \ \ 

\ ' 
\\ \\ 

. '\ \\ 
, .... ' ' 
\ -..~ \ 
l " ' \ .... ·, 
I ~·~ \ 
I ,-· ' ' 
14 ( \, \ 

\ I "'· \, 
\ I ""'-
\ I \ \ ...... __ ....__, 
\ ..., \ "'\ 
l I l l\ 
I I I I\ 
I I I I\ 

'. j' ,! l \ 
\ I I •' \ 
I I 1' I \ 
\ I I I \ 
( I f f \ 
'· I I I ) 
\ l I I .---
'· \ I I l 
\ \ I I•' 
\ \ \ '" '\ l •• 

\ \ t I I 
\ \f\I I 
\\ I \l I 
\ ll' I 
" I \I, I 
\\ I 
\\ I 
\\ I 

'' I l \ l 
\ \ \ 
\ \ l 
\ \ l 
l \ l 
"t • ' 

\ ' \ \ 

\ ' \ \ " \ 

.. 
along 

• 
• 

• 
)r 

both 

FIGURE 28. Map of 2327 flashes over central Florida for 24 hours showing several separate storms. Diamonds 
for negative flashes, plus signs for positive flashes. 
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FIGURE 30" Same time period and flashes as Figure 29, except contoured 
storms are 1 flash per 100 square km" Area inside smallest contour over 
flashes per 100 square km" 
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FIGURE 31. Map of 20,186 CG flashes from a mesoscale convective system during 24 hours over the central U.S. 
Plains. Dots for negative flashes, plus signs for positive flashes. 

FIGURE 32. Map of 868 flashes during a 24-hour period in late winter showing three thunderstorm areas 
associated with traveling disturbances. Diamonds for negative flashes, plus signs for positive flashes. 
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FIGURE 34. Map of flashes during a 24-hour period in late autumn <:wn"''"" linear structures in the 
convection over the central United States. Dots for negative flashes, flashes. 
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F1GURE 35. Map of 44,080 flashes during a 22-hour period of autumn associated with severe weather. 
Diamonds for negative flashes, plus signs for positive flashes. 
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F1GURE 36. Map of 19,517 flashes associated with a north-south cold front and east-west warm front in late 
winter. Diamonds for negative flashes, plus signs for positive flashes. 
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6. ACRONYMS AND DEFINITIONS 

ARSI 

CG 

GDS 

LLP 

LPATS 

Mapping system 

ONE RA 

Polarity 

Negative 
Positive 

SAFIR 

TOA 

Total lightning 

Atmospheric Research Systems Incorporated: 

Cloud-to-ground flash (ground flash, ground strike). 

GeoMet Data Systems, Incorporated. 

Lightning Location and Protection, Incorporated. 

Lightning Position and Tracking System. 

A system that maps lightning flashes by locating sources of electromagnetic 
radiation. 

Office National d'Etudes et de Recherches Aerospatiales. 

CG flash lowering negative charge to ground (most common). 
CG flash lowering positive charge to ground (less common). 

Systeme d'Alerte Foudre par Interferometrie Radioelectrique. 

Time-of-arrival method of lightning detection. 

All negative and positive CG and cloud flashes. 
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